Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 154
1.
Animal Model Exp Med ; 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38572767

BACKGROUND: Adenoid hypertrophy (AH) is a common pediatric disease that significantly impacts the growth and quality of life of children. However, there is no replicable and valid model for AH. METHODS: An AH rat model was developed via comprehensive allergic sensitization, chronic inflammation induction, and chronic intermittent hypoxia (CIH). The modeling process involved three steps: female Sprague-Dawley rats (aged 4-5 weeks) were used for modeling. Allergen sensitization was induced via intraperitoneal administration and intranasal provocation using ovalbumin (OVA); chronic nasal inflammation was induced through intranasal lipopolysaccharide (LPS) administration for sustained nasal irritation; CIH akin to obstructive sleep apnea/hypopnea syndrome was induced using an animal hypoxia chamber. Postmodel establishment, behaviors, and histological changes in nasopharynx-associated lymphoid tissue (NALT) and nasal mucosa were assessed. Arterial blood gas analysis and quantification of serum and tissue levels of (interleukin) IL-4 and IL-13, OVA-specific immunoglobulin E (sIgE), eosinophil cationic protein (ECP), tumor necrosis factor (TNF-α), IL-17, and transforming growth factor (TGF)-ß were conducted for assessment. The treatment group received a combination of mometasone furoate and montelukast sodium for a week and then was evaluated. RESULTS: Rats exhibited notable nasal symptoms and hypoxia after modeling. Histopathological analysis revealed NALT follicle hypertrophy and nasal mucosa inflammatory cell infiltration. Elevated IL-4, IL-13, IL-17, OVA-sIgE, ECP, and TNF-α levels and reduced TGF-ß levels were observed in the serum and tissue of model-group rats. After a week of treatment, the treatment group exhibited symptom and inflammatory factor improvement. CONCLUSION: The model effectively simulates AH symptoms and pathological changes. But it should be further validated for genetic, immunological, and hormonal backgrounds in the currently used and other strains and species.

2.
Neurosci Bull ; 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38564049

Epilepsy is a multifaceted neurological syndrome characterized by recurrent, spontaneous, and synchronous seizures. The pathogenesis of epilepsy, known as epileptogenesis, involves intricate changes in neurons, neuroglia, and endothelium, leading to structural and functional disorders within neurovascular units and culminating in the development of spontaneous epilepsy. Although current research on epilepsy treatments primarily centers around anti-seizure drugs, it is imperative to seek effective interventions capable of disrupting epileptogenesis. To this end, a comprehensive exploration of the changes and the molecular mechanisms underlying epileptogenesis holds the promise of identifying vital biomarkers for accurate diagnosis and potential therapeutic targets. Emphasizing early diagnosis and timely intervention is paramount, as it stands to significantly improve patient prognosis and alleviate the socioeconomic burden. In this review, we highlight the changes and molecular mechanisms of the neurovascular unit in epileptogenesis and provide a theoretical basis for identifying biomarkers and drug targets.

3.
Cell ; 187(10): 2428-2445.e20, 2024 May 09.
Article En | MEDLINE | ID: mdl-38579712

Alveolar type 2 (AT2) cells are stem cells of the alveolar epithelia. Previous genetic lineage tracing studies reported multiple cellular origins for AT2 cells after injury. However, conventional lineage tracing based on Cre-loxP has the limitation of non-specific labeling. Here, we introduced a dual recombinase-mediated intersectional genetic lineage tracing approach, enabling precise investigation of AT2 cellular origins during lung homeostasis, injury, and repair. We found AT1 cells, being terminally differentiated, did not contribute to AT2 cells after lung injury and repair. Distinctive yet simultaneous labeling of club cells, bronchioalveolar stem cells (BASCs), and existing AT2 cells revealed the exact contribution of each to AT2 cells post-injury. Mechanistically, Notch signaling inhibition promotes BASCs but impairs club cells' ability to generate AT2 cells during lung repair. This intersectional genetic lineage tracing strategy with enhanced precision allowed us to elucidate the physiological role of various epithelial cell types in alveolar regeneration following injury.


Alveolar Epithelial Cells , Cell Lineage , Lung , Regeneration , Stem Cells , Animals , Mice , Stem Cells/metabolism , Stem Cells/cytology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/cytology , Lung/cytology , Lung/metabolism , Pulmonary Alveoli/cytology , Pulmonary Alveoli/metabolism , Receptors, Notch/metabolism , Lung Injury/pathology , Cell Differentiation , Signal Transduction , Mice, Inbred C57BL
4.
Plant Physiol ; 195(1): 580-597, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38366880

Flower bud formation is a critical process that directly determines yield and fruit quality in fruit crops. Floral induction is modulated by the balance between 2 flowering-related proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1); however, the mechanisms underlying the establishment and maintenance of this dynamic balance remain largely elusive. Here, we showed that in apple (Malus × domestica Borkh.), MdFT1 is predominantly expressed in spur buds and exhibits an increase in expression coinciding with flower induction; in contrast, MdTFL1 exhibited downregulation in apices during flower induction, suggesting that MdTFL1 has a role in floral repression. Interestingly, both the MdFT1 and MdTFL1 transcripts are directly regulated by transcription factor basic HELIX-LOOP-HELIX48 (MdbHLH48), and overexpression of MdbHLH48 in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) results in accelerated flowering. Binding and activation analyses revealed that MdbHLH48 functions as a positive regulator of MdFT1 and a negative regulator of MdTFL1. Further studies established that both MdFT1 and MdTFL1 interact competitively with MdWRKY6 protein to facilitate and inhibit, respectively, MdWRKY6-mediated transcriptional activation of target gene APPLE FLORICAULA/LFY (AFL1, an apple LEAFY-like gene), ultimately regulating apple flower bud formation. These findings illustrate the fine-tuned regulation of flowering by the MdbHLH48-MdFT1/MdTFL1-MdWRKY6 module and provide insights into flower bud formation in apples.


Flowers , Gene Expression Regulation, Plant , Malus , Plant Proteins , Malus/genetics , Malus/metabolism , Malus/growth & development , Malus/physiology , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Plants, Genetically Modified , Gene Regulatory Networks , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/physiology , Solanum lycopersicum/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
5.
Circulation ; 149(2): 135-154, 2024 01 09.
Article En | MEDLINE | ID: mdl-38084582

BACKGROUND: Endothelial cell (EC) generation and turnover by self-proliferation contributes to vascular repair and regeneration. The ability to accurately measure the dynamics of EC generation would advance our understanding of cellular mechanisms of vascular homeostasis and diseases. However, it is currently challenging to evaluate the dynamics of EC generation in large vessels such as arteries because of their infrequent proliferation. METHODS: By using dual recombination systems based on Cre-loxP and Dre-rox, we developed a genetic system for temporally seamless recording of EC proliferation in vivo. We combined genetic recording of EC proliferation with single-cell RNA sequencing and gene knockout to uncover cellular and molecular mechanisms underlying EC generation in arteries during homeostasis and disease. RESULTS: Genetic proliferation tracing reveals that ≈3% of aortic ECs undergo proliferation per month in adult mice during homeostasis. The orientation of aortic EC division is generally parallel to blood flow in the aorta, which is regulated by the mechanosensing protein Piezo1. Single-cell RNA sequencing analysis reveals 4 heterogeneous aortic EC subpopulations with distinct proliferative activity. EC cluster 1 exhibits transit-amplifying cell features with preferential proliferative capacity and enriched expression of stem cell markers such as Sca1 and Sox18. EC proliferation increases in hypertension but decreases in type 2 diabetes, coinciding with changes in the extent of EC cluster 1 proliferation. Combined gene knockout and proliferation tracing reveals that Hippo/vascular endothelial growth factor receptor 2 signaling pathways regulate EC proliferation in large vessels. CONCLUSIONS: Genetic proliferation tracing quantitatively delineates the dynamics of EC generation and turnover, as well as EC division orientation, in large vessels during homeostasis and disease. An EC subpopulation in the aorta exhibits more robust cell proliferation during homeostasis and type 2 diabetes, identifying it as a potential therapeutic target for vascular repair and regeneration.


Diabetes Mellitus, Type 2 , Vascular Endothelial Growth Factor A , Animals , Mice , Vascular Endothelial Growth Factor A/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Aorta/metabolism , Endothelial Cells/metabolism , Homeostasis , Ion Channels/metabolism
6.
Eur J Med Chem ; 265: 116099, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38160618

A series of butylphthalide and scutellarein hybrids 3-(alkyl/alkenyl) hydroxyphthalide derivatives were designed, synthesized and evaluated as multifunctional agents against Alzheimer's disease. In vitro bioactivity assays indicated that most of the compounds displayed excellent antioxidant activity and moderate to good inhibition activities of self-induced Aß1-42 aggregation. Among them, compound 7c was demonstrated as a potential and balanced multifunctional candidate displaying the best inhibitory effects on self- and Cu2+-induced Aß1-42 aggregation (90.2 % and 35.4 %, respectively) and moderate activity for disaggregation of Aß1-42 aggregation (42.5 %). In addition, 7c also displayed excellent antioxidant (2.42 Trolox equivalents), metal ions chelating, oxidative stress alleviation, neuroprotective and anti-neuroinflammatory activities. Furthermore, in vivo study demonstrated that 7c could ameliorate the learning and memory impairment induced by sodium nitrite and Aß1-42 in the step-down passive avoidance test. These balanced multifunctional profiles supporting compound 7c as a novel potential candidate for the treatment of AD.


Alzheimer Disease , Apigenin , Benzofurans , Neuroprotective Agents , Humans , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Structure-Activity Relationship , Cholinesterase Inhibitors/pharmacology , Drug Design , Antioxidants , Acetylcholinesterase/metabolism
7.
Food Res Int ; 175: 113639, 2024 Jan.
Article En | MEDLINE | ID: mdl-38129016

This study explored the suppressive activity of Angelica dahurica (AD), AD polysaccharides, and imperatorin on free and bound heterocyclic amine (HA) formation in roast beef patties and release profiles of bound HAs during in vitro digestion. The suppressive effects and potential mechanisms associated with free radical quenching were explored using UPLC-MS/MS, multivariate statistical analysis, and electron paramagnetic resonance (EPR). AD (0.5%, 1.0%, and 1.5%) and imperatorin (0.005%, 0.010%, and 0.015%) showed a dose-dependent inhibition for both free and bound HAs, with AD polysaccharides showing a slight inhibitory capacity. The maximum inhibition of free and bound HAs was 36.31% (1.5% AD) and 35.68% (0.015% imperatorin). The EPR results demonstrated that alkyl radicals and 1O2 were the pivotal free radicals for HAs. Furthermore, AD and imperatorin dose-dependently decreased the level of these radicals. Intriguingly, after in vitro digestion, only AD polysaccharides significantly inhibited the release of bound HAs, with imperatorin even facilitating the release process. In this study, the capacity of the AD polysaccharide to suppress the release of bound HAs and the ability of AD and imperatorin to inhibit free and bound HAs in beef patties were identified for the first time.


Angelica , Animals , Cattle , Chromatography, Liquid , Amines , Tandem Mass Spectrometry/methods , Digestion
8.
Sensors (Basel) ; 23(23)2023 Nov 22.
Article En | MEDLINE | ID: mdl-38067695

Routing protocols based on trust mechanisms have been widely investigated for wireless sensor networks, and the works have achieved good results, while there are few works on trusted routing for underwater acoustic networks (UANs). However, trust-aware routing is the key to improving the packet delivery rate and the energy efficiency of UANs. Therefore, inspired by the theory of trust evaluation, a trust-aware and fuzzy logic-based reliable layering routing protocol (TAFLRLR) is proposed. In the TAFLRLR protocol, to avoid the problem of the void area and improve the transmission reliability, the candidate nodes of the next-hop forwarding nodes are determined according to the layers of neighbor nodes. Moreover, a fuzzy logic-based trust evaluation mechanism (FLTEM) is provided, which employs the fuzzy comprehensive evaluation decision model to calculate the comprehensive trust value for underwater sensor nodes. Further, the node density of a candidate node and its comprehensive trust value are taken as the input of a fuzzy control system and the forwarding probability (FP) of the node is taken as the output, and the candidate node with the highest FP is selected as the best forwarding node. Simulation results illustrate the superiority and effectiveness of the TAFLRLR protocol in terms of energy efficiency, routing reliability, and transmission reliability.

9.
Pharmacol Res ; 198: 106995, 2023 Dec.
Article En | MEDLINE | ID: mdl-37979663

Melanoma is a dangerous form of skin cancer, making it important to investigate new mechanisms and approaches to enhance the effectiveness of treatment. Here, we establish a positive correlation between the human rhomboid family-1 (RHBDF1) protein and melanoma malignancy. We demonstrate that the melanoma RHBDF1 decrease dramatically inhibits tumor growth and the development of lung metastases, which may be related to the impaired glycolysis. We show that RHBDF1 function is essential to the maintenance of high levels of glycolytic enzymes, especially glucose-6-phosphate isomerase (GPI). Additionally, we discover that the E3 ubiquitin ligase tripartite motif-containing 32 (TRIM32) mediates the K27/K63-linked ubiquitination of GPI and the ensuing lysosomal degradation process. We prove that the multi-transmembrane domain of RHBDF1 is in competition with GPI, preventing the latter from interacting with NCL1-HT2A-LIN41 (NHL) domain of TRIM32. We also note that the mouse RHBDF1's R747 and Y799 are crucial for competitive binding and GPI protection. Artificially silencing the Rhbdf1 gene in a mouse melanoma model results in declined lactic acid levels, elevated cytotoxic lymphocyte infiltration, and improved tumor responsiveness to immunotherapy. These results provide credence to the hypothesis that RHBDF1 plays a significant role in melanoma regulation and suggest that blocking RHBDF1 may be an efficient technique for reestablishing the tumor immune microenvironment (TIME) in melanoma and halting its progression.


Glucose-6-Phosphate Isomerase , Melanoma , Humans , Animals , Mice , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/metabolism , Membrane Proteins/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Melanoma/genetics , Melanoma/therapy , Immunotherapy , Tumor Microenvironment , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Transcription Factors/metabolism
10.
Int J Med Microbiol ; 313(5): 151586, 2023 Sep.
Article En | MEDLINE | ID: mdl-37776814

Mycoplasma pneumoniae (MP) is one of the main pathogens causing community acquired pneumonia (CAP) in children and adults. Previous pharmacological and clinical studies have shown that Polydatin (PD) exerts anti-inflammatory action by conferring protective benefit in MP pneumonia. However, the mechanism underlying the of PD on MP infection remains unclear. It was found that PD alleviated MP-induced injury by inhibiting caspase-1/gasdermin D (GSDMD)-mediated epithelial pyroptosis. The results demonstrated that PD inhibited the transformation of GSDMD to N-terminal gasdermin-N (GSDMD-N) by decreasing caspase-1 activation, as well as suppressed the formation and secretion of interleukin-1ß (IL-1ß) and interleukin-18 (IL-18), reversed Na, K-ATPase reduction, and suppressed LDH release both in vitro and vivo. Taken together, epithelial pyroptosis in BEAS-2B cells and lung injury in mice were prevented by PD. In conclusion, PD suppressed pulmonary injury triggered by MP infection, by inhibiting the caspase-1/GSDMD-mediated epithelial pyroptosis signaling pathway. Thus, PD may be regarded as a potential therapy for MP-induced inflammation.


Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Humans , Child , Animals , Mice , Caspase 1/metabolism , Intracellular Signaling Peptides and Proteins , Pyroptosis , Gasdermins , Pneumonia, Mycoplasma/drug therapy , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism
11.
Proc Natl Acad Sci U S A ; 120(37): e2309714120, 2023 09 12.
Article En | MEDLINE | ID: mdl-37669377

Proofreading (editing) of mischarged tRNAs by cytoplasmic aminoacyl-tRNA synthetases (aaRSs), whose impairment causes neurodegeneration and cardiac diseases, is of high significance for protein homeostasis. However, whether mitochondrial translation needs fidelity and the significance of editing by mitochondrial aaRSs have been unclear. Here, we show that mammalian cells critically depended on the editing of mitochondrial threonyl-tRNA synthetase (mtThrRS, encoded by Tars2), disruption of which accumulated Ser-tRNAThr and generated a large abundance of Thr-to-Ser misincorporated peptides in vivo. Such infidelity impaired mitochondrial translation and oxidative phosphorylation, causing oxidative stress and cell cycle arrest in the G0/G1 phase. Notably, reactive oxygen species (ROS) scavenging by N-acetylcysteine attenuated this abnormal cell proliferation. A mouse model of heart-specific defective mtThrRS editing was established. Increased ROS levels, blocked cardiomyocyte proliferation, contractile dysfunction, dilated cardiomyopathy, and cardiac fibrosis were observed. Our results elucidate that mitochondria critically require a high level of translational accuracy at Thr codons and highlight the cellular dysfunctions and imbalance in tissue homeostasis caused by mitochondrial mistranslation.


Amino Acyl-tRNA Synthetases , Cardiomyopathies , Heart Diseases , Animals , Mice , Reactive Oxygen Species , Cell Cycle Checkpoints , Oxidative Stress , Mammals
12.
NPJ Regen Med ; 8(1): 41, 2023 Aug 03.
Article En | MEDLINE | ID: mdl-37537178

A genetic system, ProTracer, has been recently developed to record cell proliferation in vivo. However, the ProTracer is initiated by an infrequently used recombinase Dre, which limits its broad application for functional studies employing floxed gene alleles. Here we generated Cre-activated functional ProTracer (fProTracer) mice, which enable simultaneous recording of cell proliferation and tissue-specific gene deletion, facilitating broad functional analysis of cell proliferation by any Cre driver.

13.
Nat Protoc ; 18(7): 2349-2373, 2023 07.
Article En | MEDLINE | ID: mdl-37268780

The ability to experimentally measure cell proliferation is the basis for understanding the sources of cells that drive organ development, tissue regeneration and repair. Recently, we generated a genetic approach to detect cell proliferation: we used genetic lineage-tracing technologies to achieve seamless recording of in vivo cell proliferation in a tissue-specific manner. We provide a detailed protocol (generation of mouse lines, characterization of mouse lines, mouse line crossing and cell-proliferation tracing) for using this genetic system to study cell proliferation. This cell-proliferation tracing system, which we term 'ProTracer' (Proliferation Tracer), permits lifelong noninvasive monitoring of cell proliferation of specific cell lineages in live animals. Compared with other short-term strategies that require execution of animals, ProTracer does not require sampling or animal sacrifice for tissue processing. To highlight these features, we used ProTracer to study the proliferation of hepatocytes during liver homeostasis and after tissue injury in mice. We show that the protocol is applicable to study any in vivo cell proliferation, which takes ~9 months to finish from mouse generation to data analysis. This protocol can easily be carried out by researchers skilled in mouse-related experiments.


Hepatocytes , Liver , Mice , Animals , Cell Differentiation , Liver/metabolism , Hepatocytes/metabolism , Cell Lineage , Cell Proliferation
14.
J Pharm Biomed Anal ; 234: 115545, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37364453

In this experiment, a water-soluble, nitrogen-doped yellow-green fluorescent N-doped carbon dots (N-CDs) were synthesized by one-step hydrothermal method using ß-cyclodextrin as carbon source and L-phenylalanine as nitrogen source. The fluorescence quantum yield of the obtained N-CDs was as high as 9.96%, and the N-CDs exhibited photostability at different pH, ionic strength and temperature. The morphology of the N-CDs was approximately spherical with an average particle size of about 9.4 nm. Based on the fluorescence enhancement effect of mycophenolic acid (MPA) on N-CDs, a quantitative detection method of MPA was established. This method had good selectivity and high sensitivity for MPA. The fluorescence sensing system was applied to the detection of MPA in human plasma. The linear range of MPA were 0.06-3 µg·mL-1 and 3-27 µg·mL-1 with a detection limit of 0.016 µg·mL-1, and the recoveries were 97.03∼100.64 % with the RSDs of 0.13∼2.90 %. The interference experiment results showed that the interference of other coexisting substances, including Fe3+, can be ignored in the actual detection. Comparing the results measured by the established method with the EMIT method, it was found that the results obtained by the two methods were similar, and the relative error was within ± 5 %. This study provided a simple, rapid, sensitive, selective and effective method for the quantitative analysis of MPA, and was expected to be applied to clinical MPA blood concentration monitoring.


Mycophenolic Acid , Quantum Dots , Humans , Fluorescence , Quantum Dots/chemistry , Carbon/chemistry , Nitrogen/chemistry , Fluorescent Dyes/chemistry
15.
Molecules ; 28(9)2023 Apr 29.
Article En | MEDLINE | ID: mdl-37175232

α-Glucosidase (AGS) inhibitors have been regarded as an ideal target for the management of type 2 diabetes mellitus (T2DM) since they can maintain an acceptable blood glucose level by delaying the digestion of carbohydrates and diminishing the absorption of monosaccharides. In the process of our endeavor in mining AGS inhibitors from natural sources, the culture broth of two mangrove-derived actinomycetes Streptomyces sp. WHUA03267 and Streptomyces sp. WHUA03072 exhibited an apparent inhibitory activity against AGS. A subsequent chemical investigation into the two extracts furnished 28 secondary metabolites that were identified by spectroscopic methods as two previously undescribed linear polyketides 1-2, four benzenoid ansamycins 3-6, fourteen cyclodipeptides 7-18, one prenylated indole derivative 19, two fusicoccane-type diterpenoids 20-21, two hydroxamate siderophore 22-23, and five others 24-28. Among all of the isolates, 11 and 24 were obtained from actinomycetes for the first time, while 20-21 had never been reported to occur in a marine-derived microorganism previously. In the in vitro AGS inhibitory assay, compounds 3, 8, 9, 11, 14, 16, and 17 exhibited potent to moderate activity with IC50 values ranging from 35.76 ± 0.40 to 164.5 ± 15.5 µM, as compared with acarbose (IC50 = 422.3 ± 8.4 µM). The AGS inhibitory activity of 3, 9, 14, 16, and 17 was reported for the first time. In particular, autolytimycin (3) represented the first ansamycin derivative reported to possess the AGS inhibitory activity. Kinetics analysis and molecular docking were performed to determine the inhibition types and binding modes of these inhibitors, respectively. In the MTT assay, 3, 8, 9, 11, 14, 16, and 17 exhibited no apparent cytotoxicity to the human normal hepatocyte (LO2) cells, suggesting satisfactory safety of these AGS inhibitors.


Actinobacteria , Diabetes Mellitus, Type 2 , Streptomyces , Humans , Glycoside Hydrolase Inhibitors/chemistry , Actinobacteria/metabolism , Actinomyces/metabolism , Molecular Docking Simulation , Streptomyces/metabolism , alpha-Glucosidases/metabolism , Molecular Structure
16.
Research (Wash D C) ; 6: 0121, 2023.
Article En | MEDLINE | ID: mdl-37223477

Disturbance of the cholinergic system plays a crucial role in the pathological progression of neurological diseases that cause dyskinesia-like behaviors. However, the molecular mechanisms underlying this disturbance remain elusive. Here, we showed that cyclin-dependent kinase 5 (Cdk5) was reduced in cholinergic neurons of midbrain according to the single-nucleus RNA sequencing analysis. Serum levels of CDK5 also decreased in patients with Parkinson's disease accompanied by motor symptoms. Moreover, Cdk5 deficiency in cholinergic neurons triggered paw tremors, abnormal motor coordination, and motor balance deficits in mice. These symptoms occurred along with cholinergic neuron hyperexcitability and increases in the current density of large-conductance Ca2+-activated K+ channels (BK channels). Pharmacological inhibition of BK channels restrained the excessive intrinsic excitability of striatal cholinergic neurons in Cdk5-deficient mice. Furthermore, CDK5 interacted with BK channels and negatively regulated BK channel activity via phosphorylation of threonine-908. Restoration of CDK5 expression in striatal cholinergic neurons reduced dyskinesia-like behaviors in ChAT-Cre;Cdk5f/f mice. Together, these findings indicate that CDK5-induced phosphorylation of BK channels involves in cholinergic-neuron-mediated motor function, providing a potential new therapeutic target for treating dyskinesia-like behaviors arising from neurological diseases.

17.
Asian J Pharm Sci ; 18(2): 100797, 2023 Mar.
Article En | MEDLINE | ID: mdl-37035132

Exosomes, as promising vehicles, have been widely used in the research of oral drug delivery, but the generally low drug loading efficiency of exosomes seriously limits its application and transformation. In this study, we systematically investigated the effects of drug loading methods and physicochemical properties (lipophilicity and molecular weight) on drug loading efficiency of milk-derived exosomes to explore the most appropriate loading conditions. Our finding revealed that the drug loading efficiency of exosomes was closely related to the drug loading method, drug lipophilicity, drug molecular weight and exosome/drug proportions. Of note, we demonstrated the universality that hydrophilic biomacromolecule drugs were the most appropriate loading drugs for milk-derived exosomes, which was attributed to the efficient loading capacity and sustained release behavior. Furthermore, milk-derived exosomes could significantly improve the transepithelial transport and oral bioavailability of model hydrophilic biomacromolecule drugs (octreotide, exendin-4 and salmon calcitonin). Collectively, our results suggested that the encapsulation of hydrophilic biomacromolecule drugs might be the most promising direction for milk exosomes as oral drug delivery vehicles.

19.
Microorganisms ; 11(3)2023 Mar 11.
Article En | MEDLINE | ID: mdl-36985297

Rhizosphere microbiota is important for plant growth and health. Domestication is a process to select suitable plants to satisfy the needs of humans, which may have great impacts on the interaction between the host and its rhizosphere microbiota. Rapeseed (Brassica napus) is an important oilseed crop derived from the hybridization between Brassica rapa and Brassica oleracea ~7500 years ago. However, variations in rhizosphere microbiota along with rapeseed domestication remain poorly understood. Here, we characterized the composition and structure of the rhizosphere microbiota among diverse rapeseed accessions, including ten B. napus, two B. rapa, and three B. oleracea accessions through bacterial 16S rRNA gene sequencing. B. napus exhibited a higher Shannon index and different bacterial relative abundance compared with its wild relatives in rhizosphere microbiota. Moreover, artificial synthetic B. napus lines G3D001 and No.2127 showed significantly different rhizosphere microbiota diversity and composition from other B. napus accessions and their ancestors. The core rhizosphere microbiota of B. napus and its wild relatives was also described. FAPROTAX annotation predicted that the synthetic B. napus lines had more abundant pathways related to nitrogen metabolism, and the co-occurrence network results demonstrated that Rhodoplanes acted as hub nodes to promote nitrogen metabolism in the synthetic B. napus lines. This study provides new insights into the impacts of rapeseed domestication on the diversity and community structure of rhizosphere microbiota, which may highlight the contribution of rhizosphere microbiota to plant health.

20.
Nat Genet ; 55(4): 651-664, 2023 04.
Article En | MEDLINE | ID: mdl-36914834

Following severe liver injury, when hepatocyte-mediated regeneration is impaired, biliary epithelial cells (BECs) can transdifferentiate into functional hepatocytes. However, the subset of BECs with such facultative tissue stem cell potential, as well as the mechanisms enabling transdifferentiation, remains elusive. Here we identify a transitional liver progenitor cell (TLPC), which originates from BECs and differentiates into hepatocytes during regeneration from severe liver injury. By applying a dual genetic lineage tracing approach, we specifically labeled TLPCs and found that they are bipotent, as they either differentiate into hepatocytes or re-adopt BEC fate. Mechanistically, Notch and Wnt/ß-catenin signaling orchestrate BEC-to-TLPC and TLPC-to-hepatocyte conversions, respectively. Together, our study provides functional and mechanistic insights into transdifferentiation-assisted liver regeneration.


Liver Regeneration , Liver , Cell Proliferation/genetics , Hepatocytes , Epithelial Cells , Stem Cells , Cell Differentiation/genetics
...